
Stdg Reference Manual

Stdg 4.4 by Loki copyright © 1993

Stdg can be distributed in an unmodified form freely.
It should not be distributed for commercial gain.

Stdg can also be used freely for non-commercial purposes.
If you wish to write commercial applications with it,

please see the accompanying readme file.

All function and structure definitions can be found in the "stdg.h" include file.
The library is currently only implemented for the C programming language,
but exists on both the Apple Macintosh and Microsoft Windows platforms.

Initialisation

SYNOPSIS

int main(int argc, char **argv);
void ginit(char *name, voidfn *adjust_menus, menu *menubar);
void gexit(void);
void gflush(void);

extern void (*gerror)(char *errstr);

extern bitmap *screen;
extern font * sys_font;
extern font * fixed_font;
extern cursor * current_cursor;
extern window * active_window;
extern short menu_item;

DESCRIPTION

The program begins in the main function, which must be defined as
shown. The arguments and the return value will only have meaning on
UNIX platforms.

The function ginit initialises the structures necessary to use the library's
graphics interface. The name argument specifies the name of the
application, which can be sent to its environment if necessary. The name
is used on UNIX platforms to uniquely specify a resource directory where
application resources are kept. The adjust_menus function is called just
after the user clicks in the application's menubar, and just before any
menus are displayed. It can thus ensure the menus correctly reflect the
current state of the program.

The menubar argument is a NULL terminated array of menus, each
menu being a NULL terminated array of menuitems. An application has
only one menubar, which may be displayed at the top of the screen, or at
the top of the first window the application creates depending on the
environment the program is running in.

The gexit function disposes of the application's graphical resources, and
should be called at the end of each program. It will close all of the
application's windows as part of its actions.

Graphics operations on some platforms (such as X-Windows) may be
buffered, and for those platforms calling gflush ensures all pending
graphics requests are processed. On other platforms the function exists
and does nothing. All event handling routines call gflush, so usually it
will not be necessary to call it.

If the gerror function is not NULL, it will be called by the library
whenever an internal error occurs. The default error function displays the
error string errstr in a window, and after the user clicks with the mouse,
the gexit function is called and the program ends. If gerror is NULL, no

error will be raised and the programmer will have the opportunity of
testing for the error condition by checking return values. The programmer
can set gerror to be a custom error reporting function, as long as its
calling interface is the same.

Upon initialisation, the library sets screen to be the bitmap of the screen.
The screen bitmap can be used to find the depth or size of the screen, but
it is not guaranteed that drawing to the screen bitmap will work. The
sys_font is the platform's normal system font and fixed_font is a fixed
width font for use by the application. The current_cursor is guaranteed
to point to the currently displayed program cursor. The active_window
pointer will always point to the active application window, or be NULL if
there is no such window. The variable menu_item is set by the library to
be the array index of the last selected menu item.
Basic Structures

SYNOPSIS

typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;

struct point {
long x; /* horizontal co-ordinate */
long y; /* vertical co-ordinate */

};

struct rectangle {
point min; /* top-left point inside rectangle */
point max; /* bottom-right outside rectangle */

};

DESCRIPTION

A point is a location in a bitmap (see below), and is defined as:

struct point { long x; long y;};

The coordinate system has x increasing to the right and y increasing
down.

A rectangle is a rectangular area in a bitmap.

struct rectangle { point min; point max; };

By definition, min.x <= max.x and min.y <= max.y. By convention, the
right (maximum x) and bottom (maximum y) edges are excluded from the
represented rectangle, so abutting rectangles have no points in common.
Thus, max contains the coordinates of the first point beyond the
rectangle.
Bitmaps

SYNOPSIS

struct bitmap {
rectangle r; /* rectangle in data area, local coords */
short depth; /* depth = number of bits per pixel */
uchar * bits; /* bitmap data */

};

bitmap * new_bitmap(rectangle r, short depth);
bitmap * get_bitmap(char *name, short depth);
void del_bitmap(bitmap *b);

DESCRIPTION

A bitmap holds a rectangular image.

struct bitmap { rectangle r; short depth; uchar *bits; };

The rectangle r specifies the bitmap's size in pixels. A bitmap need not
have a zero origin. There are depth contiguous bits for each pixel of the
image; the bits form a binary number encoding each pixel's colour. Bits is
a pointer used internally by the library to access the bitmap.

New_bitmap creates and returns a pointer to a new white-filled bitmap.
The rectangle r is the pixel size of the bitmap and depth is the number of
bits per pixel. Depths of 1, 2, 4, 8, 16 and 32 bits per pixel are supported
on the Macintosh, while depths of 1 and 4 are supported by most VGA
drivers for PC compatibles. If an error occurs, gerror will be called, or
the function will return NULL if gerror is NULL.

Get_bitmap searches the application's resources for a bitmap of the
required name and depth, and returns the bitmap or NULL if it cannot be
found. Del_bitmap de-allocates the memory used by b. If any of the
bitmap functions are passed a depth of zero, the screen's depth will be
substituted. If a bitmap of the required depth cannot be located, one of a
lesser depth may be returned instead.
Windows

SYNOPSIS

typedef void (winfn)(window *); /* window function */

struct window {
bitmap * b; /* bitmap for the window */
rectangle r; /* window rectangle on screen */
ulong flags; /* window appearance bit array */
short kind; /* user data can be stored here */
void * data; /* user data can be stored here */
winfn *close; /* called before window is closed */

winfn *resize; /* called after window is resized */
winfn *redraw; /* called when window must be redrawn */

};

#defineSimple 0x0000
#defineVisible 0x0001
#defineBuffered 0x0002
#defineTitlebar 0x0004
#defineClosebox 0x0008
#defineMaximize 0x0010
#defineResize 0x0020
#defineAttentive 0x0040
#defineDoubleClicks 0x0080
#defineModal 0x0100
#defineFloating 0x0200
#defineWorkspace 0x0400
#defineDocument 0x0800

window * new_window(char *name, rectangle r, ushort flags);
void set_winfns(window *w, winfn *close, winfn *size, winfn *draw);
void set_winname(window *w, char *newname);
void del_window(window *w);
void show_window(window *w);
void hide_window(window *w);

DESCRIPTION

A window is a bitmap as displayed on screen. A window's bitmap is
guaranteed to have a zero origin, which corresponds with its top-left point
on screen.

struct window { bitmap *b; rectangle r; ulong flags; short kind;
void *data;

winfn *close; winfn *resize; winfn *redraw; };

B points to the represented bitmap, and can be used for drawing. R holds
the location of the window's bitmap on the screen in screen co-ordinates,
while flags is a bit-field describing the window's appearance and
behaviour. The kind integer and the data pointer can be used by the
programmer; they are initialised to zero and then ignored by the library.

The winfns are called by the window manager in response to certain user
actions. The close function is called when the user attempts to close the
window. If no such function exists, the default behaviour is for the
window to be hidden. The resize function is called when the window is
resized, and can be used to recalculate the window's appearance. The
redraw function is called after the window has been resized or when a
part of the window has been exposed, and should redraw the entire
window. All of the winfns are passed a pointer to the affected window.

New_window creates and returns a pointer to a window with the given
name. The rectangle r specifies where the window's bitmap rectangle
appears on the screen, with zero being the top-left point of the screen. If
an error occurs, gerror will be called, or the function will return NULL if
gerror is NULL.

The flags argument is a bit-field. Titlebar gives the window a titlebar
which can be used for moving it around the screen and also for displaying
the window's name. Closebox gives the user a way of closing the
window. Maximize gives the user a way of increasing the size of the
window to its maximum, and Resize gives the user a method of changing
the size of the window.

Attentive windows will receive the mouse click which activates them.
Windows created with the DoubleClicks flag will produce mouse events
which have the DoubleClick bit set in their kind field if the user clicks
rapidly and repeatedly with the mouse buttons. Modal means the window
will be in front of all other application windows when it is displayed, and

no events will be sent to the other windows until it is hidden. Floating
windows will appear in front of all other application windows even when
not active.

A Workspace window can contain many Document windows. The
appearance of these windows depends on the platform. Only one
Workspace window can be created per application, but any number of
Document windows can appear within it. On the Macintosh, a Workspace
window will just be the screen and will have no window structure, but
under Windows it is a normal window. Document windows automatically
have the following flags set: Titlebar, Closebox, Maximize, Resize.

The Buffered flag is set by the library if the window requires the use of
the gflush function for its contents to be drawn to the screen. The Visible
flag is set by the library when the window is visible. New windows are
invisible. The menubar, titlebars, resize boxes and window outlines are
neither part of the screen bitmap nor a window's bitmap.

Set_winfns sets the functions to be called when the window is closed,
resized or redrawn. Set_winname changes the name of the window as
shown the window's titlebar. Del_window de-allocates the specified
window, hiding it first if necessary. Show_window shows the specified
window on the screen and ensures it is the frontmost application window.
Hide_window causes the specified window to vanish from the screen.
Arithmetic functions

SYNOPSIS

#definedx(r) ((r).max.x-(r).min.x)
#definedy(r) ((r).max.y-(r).min.y)

point pt(long x, long y);
rectangle rect(long minx, long miny, long maxx, long maxy);
rectangle rdiag(long minx, long miny, long width, long height);

rectangle rpt(point min, point max);

point addp(point p1, point p2);
point subp(point p1, point p2);
point mulp(point p, long i);
point divp(point p, long i);
rectangle raddp(rectangle r, point p);
rectangle rsubp(rectangle r, point p);
rectangle mulr(rectangle r, long i);
rectangle divr(rectangle r, long i);
rectangle insetr(rectangle r, long i);
rectangle rcanon(rectangle r);
short pinr(point p, rectangle r);
short rxr(rectangle r1, rectangle r2);
short eqp(point p1, point p2);
short eqr(rectangle r1, rectangle r2);
short rclip(rectangle *r1, rectangle r2);

DESCRIPTION

The functions pt, rect, rdiag and rpt construct geometrical data types
from their components. The macros dx and dy give the width and height
of a rectangle.

Addp returns the point sum of its arguments: pt(p.x+q.x, p.y+q.y). Subp
returns the point difference of its arguments: pt(p.x-q.x, p.y-q.y). Mulp
returns the point pt(p.x*a, p.y*a). Divp returns the point pt(p.x/a, p.y/a).

Raddp returns the rectangle rpt(addp(r.min, p), addp(r.max, p)); rsubp
returns the rectangle rpt(subp(r.min, p), subp(r.max, p)). Mulr returns the
rectangle rpt(mulp(r.min, a), mulp(r.max, a)); Divr returns the rectangle
rpt(divpt(r.min, a), divpt(r.max, a)).

Insetr returns the rectangle rect(r.min.x+n, r.min.y+n, r.max.x-n, r.max.y-

n).

Rcanon returns a rectangle with the same extent as r, canonicalized so
that min.x <= max.x, and min.y <= max.y.

Pinr returns 1 if p is a point within r, and 0 otherwise. Rxr returns 1 if r1
and r2 share any point, and 0 otherwise. Eqp compares its argument
points and returns 0 if unequal, 1 if equal. Eqr does the same for its
argument rectangles.

Rclip clips the rectangle pointed to by r1 so that it is completely
contained within r2. The return value is 1 if any part of *r1 is within r2.
Otherwise, the return value is 0 and *r1 is unchanged.
Cursors & Fonts

SYNOPSIS

struct cursor {
point offset; /* bitmap offset from mouse location */
uchar white[2*16]; /* white mask */
uchar black[2*16]; /* black shape */
void * cp; /* library data: initialise to NULL */

};

struct font {
short height; /* height of a line */
short ascent; /* top of bitmap to baseline */
short descent; /* baseline to descender */

};

cursor * get_cursor(char *name);
void set_cursor(cursor *c);
font * get_font(char *name, char *style, ushort size);

DESCRIPTION

A cursor is put in this structure:

struct cursor { point offset; uchar white[2*16]; uchar black[2*16];
void *cp; };

The arrays are to be arranged in rows, two characters per row, to give 16
rows of 16 bits each. A cursor is displayed on the screen by adding offset
to the current mouse position, using white as a mask to white out the
pixels where white is 1, and then setting all pixels to black where black
is 1.

The get_cursor function finds a cursor with the given name in the
application's resources and returns a pointer to it. If the named cursor
cannot be found, the function will call gerror, or return NULL if gerror is
NULL. The set_cursor function will change the application's cursor to the
specified one. The cp field must be set to NULL initially if the cursor is
from application data; it is used internally by the library.

A font is a typeface of a certain point size.

struct font {short height; short ascent; short descent; };

The height is the distance in pixels from the top of one line of text to the
top of the next. The ascent and descent are respectively the distances
above and below the font's baseline that the font characters actually
extend.

The get_font function returns a pointer to a required font. A font has a
name, a style and a size in points. The style is specified as a string
containing space or comma separated words defining the style. An
example style string might be "Bold, italic". The function returns NULL
if the font cannot be obtained.

Drawing functions

SYNOPSIS

typedef ulong pixval;

void bit_copy(bitmap *db, point p, bitmap *sb, rectangle r, pixval v);
void texture_rect(bitmap *db, rectangle r, bitmap *sb, pixval v);
void invert_rect(bitmap *db, rectangle r);
void fill_rect(bitmap *db, rectangle r, pixval v);
void draw_rect(bitmap *db, rectangle r, long w, pixval v);

void draw_point(bitmap *db, point p, pixval v);
void draw_line(bitmap *db, point p1, point p2, pixval v);
void draw_arc(bitmap *db, point p0, point p1, point p2, pixval v);
void fill_circle(bitmap *db, point p, long r, pixval v);
void draw_circle(bitmap *db, point p, long r, pixval v);
void fill_ellipse(bitmap *db, point p, long r1, long r2, pixval v);
void draw_ellipse(bitmap *db, point p, long r1, long r2, pixval v);
point draw_string(bitmap *db, point p, font *f, char *s, pixval v);
long strwidth(font *f, char *s);
point strsize(font *f, char *s);

/* Transfer code pixvals for drawing operations */

enum {
Zeros = 0x00,DnorS = 0x01,
DandnotS = 0x02,notS = 0x03,
notDandS = 0x04,notD = 0x05,
DxorS = 0x06,DnandS = 0x07,
DandS = 0x08,DxnorS = 0x09,
D = 0x0A, DornotS= 0x0B,
S = 0x0C, notDorS= 0x0D,
DorS = 0x0E, Ones = 0x0F

}

/* Colour pixvals */

#defineBLACK 0x00000000L
#defineWHITE 0xFFFFFF00L
#defineBLUE 0x0000FF00L
#defineYELLOW 0xFFFF0000L
#defineGREEN 0x00FF0000L
#defineMAGENTA0xFF00FF00L
#define RED 0xFF000000L
#define CYAN 0x00FFFF00L
#define GREY 0x7F7F7F00L
#define LTGREY 0xBFBFBF00L
#define DKGREY 0x3F3F3F00L

DESCRIPTION

All of the drawing operations draw into a destination bitmap db. Some operations transfer pixel values from a source bitmap sb,
while most take pixel values given in a pixval argument v. A pixval is a data type which has two purposes: to specify how to
compute each destination pixel as a function of source and destination pixels; and to supply a source pixel value for those drawing
operations that do not take source pixel values from another bitmap.

The high three bytes of a pixval is used to specify the source colour, using the red-green-blue scheme. The highest byte encodes the
intensity of red light, the second highest byte encodes the intensity of green light, and the third highest byte encodes the intensity of
blue light.

The lowest byte of a pixval holds a transfer code. The sixteen transfer code pixvals give all possible bitwise operations of the source
S and destination D. For the purposes of these bitwise operations, black will always have a pixel value equal to all zeros, while white
will have a pixel value which is all ones. If a source colour is specified but the transfer code is left as zero, the transfer code S is
assumed (which just has the effect of copying the source colour into the destination bitmap).

Black and white can always be represented in a bitmap, while other colours may have to be approximated. For bitmaps of depth 1, all
colours except grey are mapped to either black or white as follows: hues near blue, red and magenta will map to solid black, while
lighter hues near green, cyan and yellow will map to solid white. The grey pixval will result in dithering to produce a grey effect.
This will work with text and all line drawing, but may not always give desirable results when drawing thin lines. For depth 2, colours
will still map to black or white, but grey will map to a solid grey. For depths greater than 2, better approximations are used.

Bit_copy takes bits from rectangle r in the source bitmap sb, and overlays them on a congruent rectangle with the min corner at point
p in the destination bitmap db. The v parameter is used to specify how source and destination bitmap pixels are combined, so that its
colour component is ignored.

If the source and destination bitmaps have different depths, the source rectangle is first converted to have the same depth as the
destination. All of the drawing graphics functions clip the rectangle against the source and destination bitmaps, so that only pixels
within the destination bitmap are changed, and none are changed that would have come from areas outside the source bitmap.

Texture_rect fills the rectangle r in the destination bitmap db with copies of the source bitmap sb. The copies are aligned so that
repeating patterns will look correct. It also ignores the colour component of v, but uses it as a transfer code. Invert_rect inverts black
and white in the required rectangle. Inversion of coloured areas is not guaranteed to produce the desired results.

Fill_rect fills a rectangle with a certain colour, specified as a pixval v. Draw_rect draws four lines of width w within the given
rectangle. If w is negative, draw_rect draws the lines outside the given rectangle. The lines will be of a colour and transfer code

specified by v.

Draw_point changes the value of the destination point p in bitmap db to the required pixel value v. Draw_line draws a line segment
in bitmap db with a pixel value v from point p1 to p2. The segment is half-open: p1 is the first point of the segment and p2 is the
first point beyond the segment, so adjacent segments sharing endpoints abut.

Draw_arc draws a circular arc centred on p0, travelling anti-clockwise from p1 to p2, or to a point on the line passing through p0
and p2. The arc will be one pixel thick and of pixel value v. Fill_circle fills a circle centred on p with radius r using the pixel value
v. Draw_circle draws a one pixel thick circle of the given pixel value instead of filling it. Fill_ellipse and draw_ellipse are similar,
except the horizontal semi-axis is r1 and vertical semi-axis is r2.

Draw_string draws the text characters given by the null-terminated string s into bitmap db, using font f and pixel value v. The upper
left corner of the first character (i.e., a point that is f->ascent above the baseline) is placed at point p, and subsequent characters are
placed on the same baseline, displaced to the right by the previous character's width. Draw_string returns the point in the destination
bitmap after the final character of s (or where the final character would be drawn, assuming no clipping; the returned value might be
outside the destination bitmap).

The bounding box for text to be drawn with draw_string in font f can be found with strsize; it returns the max point of the bounding
box, assuming a min point of (0,0). Strwidth returns the x-component of the max point.

Menus

SYNOPSIS

typedef void voidfn(void); /* function which takes no arguments and
returns nothing */

struct menuitem {
char * name; /* name of menu item, NULL=end of list */
ushort key; /* key equivalent, 0=none */
short * state; /* pointer to state variable */
voidfn * action; /* action to perform when item is chosen

*/
};

typedef menuitem *menu; /* array of menuitem pointers, NULL
terminated */

#defineDisabled 0x00
#defineEnabled 0x01
#defineTicked 0x02

extern short menu_item; /* array index of last selected item */

DESCRIPTION

A menuitem is a single item in a menu. A menu is an array of menuitems
terminated by an empty menuitem.

struct menuitem { char *name; short key; char *state; voidfn
*action; };

typedef menuitem *menu;

The first menuitem in a menu designates the name of the entire menu.
Each menuitem has a name, and can have a shortcut key. Holding down
Control or Command while pressing this key has the effect of selecting
that menuitem.

The appearance of the menuitem is determined by a state variable pointed
to by state. The item can be Enabled or Disabled (grey), and may
optionally be Ticked. If state is NULL, the item is disabled. The action
function is called when the item is selected. The library global
menu_item is set to the array index of the selected item when action is
called. The third item in a menu after the menu's name will thus cause
menu_item to be set to three if it is selected.

Every application can have a menubar. A menubar is a NULL terminated
array of menus. On Macintosh platforms, the menubar will appear in its
normal place at the top of the screen. On Windows and X-Windows
platforms, the menubar will appear in the first window the program
creates. The menubar is passed as an argument to ginit.

If a menu's first item (the menu's name) is disabled, all of the items in that
menu will be disabled, except the name itself. This provides a way of de-
activating an entire menu without modifying the state of each item
separately.

The menuitem states can be modified during the adjust_menus function,
which is one of the arguments to ginit. The adjust_menus function is
called just before any menus are actually displayed, and can ensure that
the current state of the menus matches the program's state.
Mouse Events

SYNOPSIS

struct mouse {
uchar kind; /* mouse event kind bit array */
uchar buttons; /* mouse button state bit array: LMR=124

*/
point xy; /* location of mouse */

};

#defineNoButton 0x00
#defineLeftButton 0x01
#defineMiddleButton 0x02
#defineRightButton 0x04

#defineMouseMove 0x00
#defineMouseDown 0x10
#defineMouseUp 0x20
#defineMouseTimer 0x40
#defineDoubleClick 0x80

#defineLeftButtonDown (MouseDown | LeftButton)
#defineMiddleButtonDown (MouseDown | MiddleButton)
#defineRightButtonDown (MouseDown | RightButton)
#defineLeftButtonUp (MouseUp | LeftButton)
#defineMiddleButtonUp (MouseUp | MiddleButton)
#defineRightButtonUp (MouseUp | RightButton)

DESCRIPTION

A mouse structure contains information about the mouse's location,
button state and activities:

struct mouse { uchar kind; uchar buttons; point xy };

Kind is a bit field which reports what kind of mouse event has just
occurred. If the mouse was just moved, kind will be set to MouseMove.
If the mouse timer mechanism (see below) has just timed out the kind
will be MouseTimer. If one of the mouse buttons has been pressed or
released the kind field will be set to a combination of bits.

Which button was pressed or released is recorded in the low four bits of
the kind field; these low four bits will be one of LeftButton,
MiddleButton or RightButton. If a button was pressed, the kind field
will have the MouseDown bit set. If a button was released the MouseUp
bit will be set. If the window from which the mouse event came has the
DoubleClicks flag set, a rapid repeated pressing of a mouse button will
cause the second MouseDown event to also have the DoubleClick bit set
in its kind field. The definitions LeftButtonDown through to
RightButtonUp are for convenience only.

Buttons is bit field which describes the current state of the mouse
buttons; buttons&LeftButton is set when the left mouse button is
depressed, buttons&MiddleButton when the middle button is depressed,
and buttons&RightButton when the right button is depressed.

For mouses with less that three buttons, the middle and right buttons can
be simulated. Holding down the Control or Option key and pressing a
mouse button is the same as depressing the middle button, while holding
down the Shift key and pressing a mouse button is the same as depressing
the right button.

The mouse position is found in the point xy. This location will be relative

to the window for which the event was generated. A window's top left
point is (0,0).
Events

SYNOPSIS

short start_timer(long msec);
short set_mouse_delay(long msec);
void delay(long msec);
short can_event(void);
short can_timer(void);
short can_mouse(window *w);
short can_key(window *w);
long get_timer(void);
mouse get_mouse(window *w);
ushort get_key(window *w);
void unget_mouse(window *w, mouse m);
void unget_key(window *w, ushort k);

DESCRIPTION

There are two main sources of events for an application: events that are
window based and events that are application based. Keyboard and
mouse events occur within the context of a window, while timer, system
and inter-application events are on an application-level.

All events are stored in a queue of their own and retrieved using the get
event functions. The get event functions will all block until there is an
event of the required type. The can functions return a non zero result
when the relevent queue is not empty, and zero when it is empty. The
unget event functions put an event back on to the start of a queue.

The can_event function returns a non-zero result if there are any events
for the application to handle. It also gives some processor time to the

library to allow menu handling and window updating to occur. All of the
can functions have this quality, and so they should be called before the
get functions which can block processing.

The application can have one timer, which sends events to the application
at regular intervals. The start_timer function starts this timer with an
interval of msec milliseconds and returns a non-zero value if successful.
If the timer could not be started, it will call gerror or return zero if gerror
is NULL. The timer can be halted by calling start_timer with an msec
value of zero. The can_timer function returns a non-zero result if there is
at least one timer event in the event queue. The get_timer function
dequeues one queued timer event, or waits until there is one before
dequeuing it.

The delay function suspends the application for the required number of
milliseconds. This should only be used for short intervals (less than a
second). Longer intervals should use the timer mechanism, which is non-
blocking and allows background processing.

The library associates the keyboard and mouse events with the windows
for which they are relevent. The functions which handle these events thus
take a pointer to the window of interest as their first argument. Only a
certain number of the latest events will remain queued for a window.

Characters typed on the keyboard will be sent to the currently active
window. Can_key returns a non-zero result if there are keyboard events
queued for the window, and zero otherwise. Get_key dequeues one
character from the keyboard event queue of a window, or waits until there
is one. Unget_key puts a character back on to the window's keyboard
event queue.

The characters returned from get_key will be normal ASCII chars unless
they are the result of typing with certain special keys. The function keys,
arrow keys and editing keys (insert, delete, home, end, page up and page

down) all generate special key codes. These key codes can be found in
the include file "stdkey.h". The escape, tab and enter/return keys generate
normal ASCII escape, horizontal tab and newline codes.

When the mouse moves or a mouse button is depressed or released in the
active window, a new mouse event is queued for that window by the
event mechanism. Mouse clicks in inactive windows which have the
Attentive bit set will also be queued.

Mouse events can also be generated if a mouse button is held down for
longer than a certain time. The set_mouse_delay function sets this time
interval to be msec milliseconds. If a mouse button is held down for
longer than this time, the latest mouse event will be repeated in the queue
automatically, and this will continue to happen at the same time interval
until the mouse button is released. The effect is similar to the way
keyboard keys repeat when held down. Initially this feature is not active,
and it can be de-activated by called set_mouse_delay with msec equal to
zero.

Can_mouse returns a non-zero result if there are mouse events queued for
the window, and zero otherwise. Get_mouse dequeues one mouse
structure from the mouse event queue of a window, or waits until there is
one. Unget_mouse puts a mouse structure back on to the window's mouse
event queue.

A mouse structure looks like:

struct mouse { uchar kind; uchar buttons; point xy; };

Kind is a bit field which report what kind of mouse event has just
occurred. Buttons is a bit field which will reflect the current state of the
mouse's buttons. The current mouse position is found in xy, and this will
be in the co-ordinate system of the window.

There are other types of events which interact with applications
differently. Window manager events cause the library to call functions
related to each window. The close, resize and redraw functions are called
by the library in response to such events. If the close function does not
exist for the affected window, the library merely hides it by default. The
resize function occurs before the redraw function, and both occur after
the window manager has changed the size of a window. Redraw can also
occur when a part of a window has been exposed.

Menu events are handled entirely by the library too. Once a menubar has
been set up, interaction with it is through changing menuitem states
(disabling, enabling or ticking items). This can be done as an integral part
of a program, or in a single adjust_menus function as specified in the
ginit argument.

